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Electron energy loss spectroscopy 
database synthesis and automation 
of core‑loss edge recognition 
by deep‑learning neural networks
Lingli Kong , Zhengran Ji  & Huolin L. Xin *

The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable 
advanced material analysis including composition analyses and elemental quantifications. The 
development of the parallel EELS instrument and fast, sensitive detectors have greatly improved 
the acquisition speed of EELS spectra. However, the traditional way of core-loss edge recognition 
is experience based and human labor dependent, which limits the processing speed. So far, the 
low signal–noise ratio and the low jump ratio of the core-loss edges on the raw EELS spectra have 
been challenging for the automation of edge recognition. In this work, a convolutional-bidirectional 
long short-term memory neural network (CNN-BiLSTM) is proposed to automate the detection and 
elemental identification of core-loss edges from raw spectra. An EELS spectral database is synthesized 
by using our forward model to assist in the training and validation of the neural network. To make the 
synthesized spectra resemble the real spectra, we collected a large library of experimentally acquired 
EELS core edges. In synthesize the training library, the edges are modeled by fitting the multi-
Gaussian model to the real edges from experiments, and the noise and instrumental imperfectness 
are simulated and added. The well-trained CNN-BiLSTM network is tested against both the simulated 
spectra and real spectra collected from experiments. The high accuracy of the network, 94.9%, proves 
that, without complicated preprocessing of the raw spectra, the proposed CNN-BiLSTM network 
achieves the automation of core-loss edge recognition for EELS spectra with high accuracy.

Ionization edges (core-loss edges) on the electron energy loss spectra (EELS) carry important information 
not only reflecting the elemental information but also allowing quantitative composition analysis. In addition, 
the edge onset shift and the near-edge fine structure can be used to deduce the bonding state1. Compared to 
Energy Dispersive X-ray Spectroscopy (EDS), EELS can deliver electronic state information of a material and 
has higher sensitivity in detecting light elements2,3. However, the core-loss region of EELS is also featured by 
the low signal–noise ratio (SNR). Thus, precisely recognizing the elemental edges is the first step before any 
advanced analysis.

The traditional way of edge recognition involves multiple steps. Preprocessing operations, including back-
ground removal and sometimes multiple-scattering effect deconvolution, are conducted to extract the edges from 
the spectrum. Afterward, these edges are classified by referring to the database generated by verified experimental 
data4. Therefore, this process requires significant manual labor and is experience based.

Automatically finding ionization peaks in Energy Dispersive X-ray Spectroscopy (EDS) is now routine in com-
mercial software because the peaks are distinctively above the background and the shapes are almost universally 
gaussian. However, automatically identifying edges in the EELS spectrum has been traditionally difficult because 
the edges are sitting on a large background, and in most cases, the jump ratio is low. Due to this nature, it has 
been non-trivial to locating EELS edges automatically. A number of approaches have been proposed to extract 
edges of unknown components in the spectrum, such as the spatial variant difference approach, multivariate 
statistical analysis5 (independent components analysis (ICA)6,7, principal components analysis (PCA)8), etc. 
Unfortunately, these approaches have constraints and are rarely used in existing EELS software because they 
are not always robust. Artificial intelligence (AI) has drawn the attention of researchers to simplify complex 
workflows and reduce labor work. Machine learning algorithms have been successfully implemented in mineral 
recognition and classification from Raman spectra9. A dual Autoencoder-Classifier algorithm was also utilized to 
achieve the core-loss region denoising10. For detecting core-loss edges from the raw EELS spectra, Chatzidakis, 
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et. al. proposed a convolutional neural network (CNN) for feature extraction and compound classification, but 
it was specifically trained for Mn element valance classification11. A network that can recognize all the elements 
on a raw spectrum remains to be developed.

Given that the ionization energy of a specific element is highly related to its electron configuration, nuclear 
charge, etc., its core-loss edge can only appear within a certain range along the energy loss axis. In other words, 
the core-loss edges of different elements appear almost “sequentially” on a spectrum. In addition, core-loss edges 
are present on the plasmon tail and the tails of lower energy core edges12,13. Thus, the edge shape is also energy 
loss dependent. As a result, the traditional convolutional neural network (CNN), which is originally designed 
for image classification, fails to classify the different core-loss edges on a raw spectrum. The reason being that a 
pure CNN ended with a fully connected classification layer that is only capable of classifying whether a certain 
feature is present in the signal/image; it, however, does not use the spatial information, although the information 
is encoded in the convolutional layers. For example, the latter transition metals, Mn, Fe, Co, Ni all have similar 
“rabbit-ear” shaped L2,3 edges. A pure CNN network would have the tendency to misclassify these edges because 
their locations on the energy axis are not used. That is why the region-based CNNs with localization/bounding 
box prediction layers have been developed to perform both classification and object localization.

In this respect, the recurrent neural networks (RNNs) utilize the correlation in the “time” domain and have 
been proven to be capable of handling sequence prediction problems. Based on this consideration, we built a 
Convolutional-Bidirectional Long Short-Term Memory (CNN-BiLSTM) network by combining a CNN network 
with an RNN network, i.e., the Bidirectional Long Short-Term Memory (BiLSTM) network. Given sufficient 
training, the model is capable of achieving the automation of ionization edge recognition on raw EELS spectra. 
To build a large and diverse ground truth labeled training dataset, we digitized a large number of core-loss edges 
collected from real experiments and literature; we built the ground truth-labelled spectrum database by synthe-
sizing spectra by including experimental conditions, including the multiple scattering effect, the uncertainty of 
the energy axis due to stray field and hysteresis of the prism, the low-frequency patterned noise, etc. Our well-
trained CNN-BiLSTM network was tested against both the validation spectra and the real spectra collected from 
experiments, with average F-1 scores of 0.98 and 0.99, respectively. For the real spectra dataset prediction, only 
1.1% of the predicted spectra have false-negative elements, and 94.9% of them are accurately predicted where the 
predicted edges exactly match the ground truth. The sensitivity of the network was further evaluated by detect-
ing the lowest signal noise ratio at the edge peak (PSNR) for each element, at which the network can recognize 
the edge. Correspondingly, the detectable jump ratios were obtained. Based on our observation, the detectable 
jump ratios and PSNR are very low meaning that our networks are accurate in low-dose situations. It suggests 
that our network is remarkably sensitive to the edge signal. The high accuracy and sensitivity demonstrate that 
our network is highly reliable for core-loss edges recognition.

Methods
Database construction.  Considering that the available spectra from our own experiments are not enough 
for training a deep learning model, we built a spectrum database containing 250,000 simulated spectra, which 
are synthesized based on real ionization edges obtained from experiments/literature. The various physical phe-
nomena in experiments are embedded into the synthesized spectra by convolving the broadening effects and 
simulating the instability with randomness. In addition, edges from different experiments can have different 
quality and energy resolutions, which help to further diversify the database. The simulated spectra are in close 
resemblance to the real EELS spectra and are suitable for our CNN-BiLSTM network training.

Edge modeling.  We digitized around 400 core-loss edges covering 20 different elements from journal papers. 
The edges are then fitted by using the multi-gaussian model to locate the coordinates of the peaks and smooth 
out the noise effects as shown in Fig. 1a13. Figure 1b presents some examples of the fitted edges for different ele-
ments. We can notice that the fitted curves round off the noise fluctuations well with the near edge fine features 
well preserved.

In the real case, when a spectrum is recorded by the detector, the instrument broadening is also convolved in 
it. Therefore, we further processed the modeled edges by convolving them with the corresponding broadening 
function, i.e., the point spread function (PSF). The intensity with scattering effect can be expressed as Ir:

(a) multi-gaussian fitting of Mn-L edge  (b) original and modeled edges   (c) Mn-L edge with convolution

Figure 1.   Ionization edge modeling.
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where Iu is the original intensity without the broadening effect and E is the energy loss.
The scattering effect is composed of amonochromaticity of the beam and broadening due to the detectors. 

Thus, PSF is constructed by two terms:

where PSFamono represents the energy spread of the incoming electron beam, and PSFdetector represents the broad-
ening in the detectors. For the amonochromaticity effect, the form of the Gaussian distribution function is used:

where σ is the standard deviation, and can be expressed by:

FWHMg is the full-width half-maximum of the Gaussian distribution. In our data augmentation, it ranges 
from 0.1 to 1.6.

For the detector broadening effect, the Lorentzian distribution function is commonly used to describe the 
diffused tail (caused by light diffusion in the scintillator and the optical fiber coupler), which is expressed by:

HWHMl is the full width at half maximum of the Lorentzian distribution. In our data augmentation, it ranges 
from 0.1 to 0.6.

With the broadening effects convolved, the synthesized edges will be comparable to those obtained from the 
different instruments. Figure 1c shows the Mn–L edge before and after convolving the PSF. We can observe that 
the broadening effect of the point spread functions (PSFs) has been successfully embedded into the modeled 
edge. It is worth mentioning that the Lorentzian broadening is often neglected by researchers in the field but it 
is a critical broadening effect that shall be included to reproduce an experimental EELS spectrum.

Background and jump ratio.  In the core-loss region of the spectrum, it has been commonly accepted that the 
background can be modeled by using the inverse power law equation:

where r can vary across the specimen as a result of changes in thickness and composition. Typically, the value 
of r fluctuates around 1.88. In our case, we assign the value based on a normal distribution with a mean of 1.88 
and a standard deviation of 0.2. The values less than 0.1 in the normal distribution are cut off to guarantee that 
the background remains realistic.

To embed the modeled edges into the background, the jump ratios of the edges must be assigned. The jump 
ratio is defined as the ratio of the intensity difference between the peak intensity and the background Ip and the 
intensity of the edge start point Io, which is shown in Fig. 2. In our synthesized spectrum, the minimum jump 
ratio of the edges is set to 0.15. Because using data with too low a SNR for training would result in overfitting 
and high false positive rate, we choose a noticeable minimum jump ratio (> 0.15) to insure low false positive rate. 
Based on the digitized experimental data, we use the maximum jump ratios from experimental spectrum to set 
the upper limit of the jump ratios for the corresponding element. We summarized the edges of 20 elements and 
their edge types collected from the literature and the jump ratio range in Table 1. In our supplementary material, 
Table S1 lists the exact substances where these edges are collected.

Spectrum synthesize and data augmentation.  The spectrum synthesis process is summarized in Fig. 3. The first 
step is to randomly pick 1 to 6 edges from the edge library and convolve them with the PSFs. Figure 3a shows 

Ir(E) = Iu(E)⊗ PSFZLP

PSFZLP ∝ PSFamono ⊗ PSFdetector

PSFamono ∝ e
− E2

2σ2

σ =
FWHMg

2
√
2 ln 2

PSFdetector ∝
HWHMl

E2 +HWHM2

l

J(E) ∝ E−r

Figure 2.   Jump ratio and peak signal noise ratio.
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the 6 convolved edges we used in the example. Figure 3b lists the augmentation operations before obtaining the 
final spectrum shown in Fig. 3c.

Since we only consider the core-loss region on spectra, the energy loss range is set from 50 to 1100 eV. The 
background J(E)is normalized to Jn(E):

Before adding the edges to the background, to simulate the long tail of the core-loss edges and obtain a 
smooth merged spectrum, we extend the edges using another inverse power law, where the range of the power 
is from − 3.8 to − 1.8.

With the jump ratio randomly selected from the corresponding range for the element, the extended edge can 
be added to the background, which is shown in Fig. 3d.

In the real case, distortions and translational shifts of the spectra can be introduced due to multiple reasons 
including the hysteresis of the prism and the magnifying lenses, the spectrometer alignment, stray magnetic 
fields, and even temperature, etc. As a result, the spectra collected at different times can vary for the same instru-
ment. To simulate these phenomena, we allocate a maximum of 1.5% of the contraction or expansion ratio to the 
modeled spectrum. A random shift of the spectrum is also implemented to the spectrum with a maximum shift of 
15 eV. Figure 3b and e show the expanded spectrum. The spectrum that is further shifted is shown in Fig. 3b and f.

Jn(E) =
E−r

50−r

Table 1.   Edge library14–65.

Element (edge type) Jump ratio range Number of edges Element (edge type) Jump ratio range Number of edges

B (K) 0.15–0.5 31 Mn (L) 0.15–0.5 26

C (K) 0.15–1.5 25 Fe (L) 0.15–1.5 39

N (K) 0.15–0.7 14 Co (L) 0.15–0.7 23

O (K) 0.15–1.5 38 Ni (L) 0.15–1.5 20

F (K) 0.15–1.0 8 Cu (L) 0.15–1.0 17

Ca (L) 0.15–1.3 13 Si (L) 0.15–1.3 34

Sc (L) 0.15–1.3 6 P (L) 0.15–1.3 5

Ti (L) 0.15–1.5 47 S (L) 0.15–1.5 1

V (L) 0.15–1.5 40 Cl (L) 0.15–1.5 1

Cr (L) 0.15–1.5 18 Ar (L) 0.15–1.5 1

       a. selected edges         b. spectrum synthesizes    c. final spectrum

       d. add background            e. add expansion            f. add horizontal shift                  g. add noise

Figure 3.   Spectrum synthesize steps and process.
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The last step of the spectrum synthesis is to add correct noise to it. Firstly, Gaussian noise with a mean of 0 
and a standard deviation of 0.0012 is generated. Afterward, the Savitzky–Golay filter is applied to smooth the 
noise to low-frequency noise, where the polynomial order of the filter is set to 1, and the frame length is an odd 
positive integer in the range of 30 to 60. Figure 4 shows the raw Gaussian noise and the filtered noise. The filtered 
low-frequency noise is also called fixed-pattern noise. It is frequently seen in experimental EELS spectra primarily 
due to the non-uniform gain on the scintillator. To augment the noise level, a random coefficient C that is in the 
range from 1 to 2 is further assigned to the noise. Figure 3g presents the spectrum with noise added, which is 
also the input spectrum for our deep learning network. Table 2 summarizes the data augmentation operations 
in the process of spectrum synthesis. We generated 250,000 spectra in total, where the percentage of the spectra 
containing 1 to 6 edges are 20%, 20%, 20%, 15%, 15%, and 10%, respectively.

Network construction.  CNN‑BiLSTM network.  CNN is a type of network developed for conducting 
image recognition and has been widely implemented in image classification. A typical CNN structure is con-
structed by connecting a few convolutional layers and dense layers (fully connected layers). The convolutional 
layers can extract the features from the input data and the dense layers classify the features to achieve classifi-
cation. The recognition of the ionization edges on a spectrum is also a type of image recognition task. In the 
meanwhile, the onset ionization edge carries the information of the target element. The edge’s energy position 
relative to others plays a critical role in the classification process. However, a pure CNN structure is insensitive 
to the positional/sequential information. Given that the long short-term memory network (LSTM) enables the 
network to memorize the information in sequence by selectively keeping the important data and deleting less 
important data to pass to the next layer, we proposed a CNN-BiLSTM combined network for ionization edge 
recognition and classification in the core loss region of the spectrum. Figure 5b shows the architecture of our 
CNN-BiLSTM network, where the BiLSTM network is plotted in an unwrapped way. The real LSTM cell is de-
scribed in Fig. 5c, and is constructed with 100 hidden units. In our case, the input layer carries the information 
of a spectrum that is a 1D vector (spectrum of energy loss range from 90 to 1000 eV with interval 0.2 eV). A filter 
of size 11 is implemented in each convolutional layer. Batch normalization operation66 is carried out following 
each convolutional layer, and 20% of node dropout regularization is utilized after each dense layer to avoid over-
fitting. Activation functions, ReLU and LeakyReLU of scale 0.01, are implemented to connect different layers as 
shown in the Fig. 5b. The network is built and trained using MATLAB. The training parameter settings are listed 

Figure 4.   Gaussian noise and filtered noise.

Table 2.   Augmentation operations summary.

Operation Randomness range

Edge select Types of elements: 1–6

PSFs convolve
FWHMg: 0.1–1.6

HWHMl: 0.1–0.6

Edge extend Power r’: − 3.8 to  − 1.8

Background r: Gaussian (1.88, 0.2) > 0.1

Jump ratio Range shown in Table 1

Contraction/expansion  − 1.5 to 1.5%

Horizontal shift  − 15 to 15 eV

Gaussian noise Gaussian (0, 0.0012)

Savitzky–Golay filter
Frame length: 30–60 odd number

Coefficient C: 1.0–2.0
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in Table 3. 80% of the spectra in the database are randomly picked for the training set, and the remaining 20% 
are for the validation set.

Results and discussion
Prediction validation.  The performance of the proposed CNN-BiLSTM network is validated using mul-
tiple metrics.

F1‑score.  To evaluate the performance of the network per spectrum, we calculate the F1-score for each pre-
dicted spectrum, which is defined as the harmonic mean of precision and recall. We use NEc, NEp, and NEr to 
represent the number of correctly predicted edges (true positive), the total number of predicted edges (predicted 

Figure 5.   CNN-BiLSTM network architecture. (a) The overview. (b) The CNN-BiLSTM network structure. (c) 
The structure of the LSTM cell.

Table 3.   Network training setting.

Options Setting

ExecutionEnvironment GPU

InitialLearnRate 0.001

GradientThreshold 1

Shuffle Every-epoch

ValidationPatience Inf

ValidationFrequency 50

Verbose True
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positive), and the number of real edges (actual positive) on the spectrum, respectively. Precision, recall, and 
F1-score can be calculated by using the following equations:

Exact accuracy.  We use exact accuracy (ACC) to check how our network can accurately recognize all the edges 
on a spectrum, i.e., the ratio of the number of spectra accurately predicted (Nexa) to the total number of spectra 
tested (N). This value also reflects the percentage of the spectra whose F1-score equals to 1.

Recognition accuracy.  The following equation shows the format of the recognition accuracy. Nrec represents the 
number of spectra that the network can recognize all the edges that appear on them. In other words, the percent-
age of the spectra whose recall is 1. This matric suggests how sensitive the network can detect the available edges.

Network validation.  Besides the synthesized validation dataset, we also use 177 real experimental spectra to 
examine the performance of our network. The real spectra are from EELS Atlas Database from EELS.info, EELS 
DB (EELS Data Base) and our own experimental data67. Detailed experimental conditions for each spectra, 
including spectrum acquisition instrument, energy resolution, etc. are listed in Table S2 of the supplementary 
material.

Figure 6a shows the values of validation metrics for both the real spectra dataset and the validation dataset 
(The precision, recall, and F1-score are the averaged values). Figure 6b presents the boxplots of the F1-scores of 
the two datasets, where only some outliers have F1-scores less than 1, which means that our network is highly 
accurate in recognizing the edges. The average F1-scores of the real spectra dataset and the validation dataset are 
as high as 0.99 and 0.98, respectively. The comparable high F1-scores of the two datasets further indicate that the 
network is well-trained without overfitting. The average precision of the real spectra dataset and the validation 
dataset are 0.98 and 0.99, respectively. The average recall of the real spectra dataset and the validation dataset 
are 0.99 and 0.97, respectively. The high values of the precision and recall indicate that false positive and false 
negative edges barely appear in a prediction.

The exact accuracy and the recognition accuracy are two metrics describing the percentages of the desired 
spectra. For the real dataset, the exact accuracy reaches 94.9%. And the network sensitively detects all the edges 
presented on the spectra, which can be reflected by the recognition accuracy of 98.9%. In other words, only 

precision =
NEc

NEp

recall =
NEc

NEr

F1 =
2

recall−1 + precision−1

Acc =
Nexa

N

Rec =
Nrec

N

(a) Evaluation metrics    (b) Boxplots of F1-score
Figure 6.   Performance of the well-trained CNN-BiLSTM network.
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around 1% of the predicted spectra have edges that failed to be detected by our network. Indeed, among the 9 
failed cases, almost all the false positive Edges are due to the misrecognition of the nitrogen edge and scandium 
edge. Because the edges of these two elements have similar shapes and onsets, they can look identical on a 
spectrum. The false negative edges appear when the jump ratio is too low to be visible. The exact accuracy and 
recognition accuracy of the validation set is relatively lower than those of the real spectra dataset, but they are 
still around 90%. This phenomenon could be caused by the higher diversity of the synthesized spectra, where 
we stretched the parameters’ ranges during data augmentation to create more extreme cases.

Considering that the same element presenting in different compounds or allotropes can generate edges with 
various fine structures, the capability of our network in recognizing these edges is further evaluated. Carbon, as 
one of the essential elements forming the most compounds on earth and has multiple allotropes, is chosen as an 
example in this section to test our network. Figure 7 shows the C-K edge prediction of our network compared 
with the ground truth. Our network precisely detected the existence of the C-K edges in different materials 
containing carbon element. In addition, those spectra are from experiments68,69 different from those in our 
edge library.

Evaluation of model’s sensitivity.  Peak signal noise ratio (PSNR).  To further evaluate the sensitivity of 
the model in detecting the ionization edges for a specific element, we introduce the concept of Peak Signal Noise 
Ratio, which is the signal noise ratio at the peak of the edge. It is expressed by the ratio of the signal at the edge 
peak off the inverse power law background (shown in Fig. 2 as Ip) to the standard deviation of the noise (sd). In 
other words,

To make the value of PSNR for different elements comparable, we further synthesize one spectrum for each 
element with the value of the power r for the background set to be the same constant 1.88. We added differ-
ent levels of the Gaussian noise (white noise) to the spectra to create more extreme situations to examine the 
sensitivity of our network. The standard deviation of the noise is set to be one-tenth of the minimum value of 
the background:

PSNR =
Ip

sd

std =
min

50∼1100
Jn(E)

10

Figure 7.   Network prediction versus ground truth for C-K edges from different materials.
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Sensitivity evaluation.  To quantify the sensitivity of our network, we searched for the minimum value of PSNR 
for each element that the network can correctly recognize by varying the scale of the peak. To avoid anomalous 
results, for each element, we test the minimum value of PSNR for each edge in the library for 100 times and use 
the arithmetic mean as the final detectable PSNR. Correspondingly, the value of the jump ratio can be captured 
simultaneously. The results are listed in Table 4.

It is worth noting that the detectable jump ratios in Table 4 are much lower than the minimum value of 0.15 
we set for building the training dataset. This result illustrates that our network can manage the situation when 
the jump ratios of the edges are lower than those commonly observed in experiments. In the meanwhile, the 
noise is not smoothed by the Savitzky–Golay filter at this stage. Still, our network can sensitively extract valu-
able information from the noisy spectra. Thus, the detectable PSNR and Jump ratio in Table 4 can also serve as a 
reference for researchers determining whether the edges obtained from their experiments can be recognized by 
our network. Higher detectable PSNRs for light elements are expected because these edges tend to appear in a 
relatively high-intensity lower energy loss region. Referring to the corresponding low jump ratios, the network 
performs well in recognizing these light elements’ ionization edges.

Conclusion
In this work, we built a CNN-BiLSTM network for automatically detecting the ionization edges on EELS spectra. 
We also created a forward model for synthesizing EELS spectra, which allows us to create a database contain-
ing 250,000 spectra with ground-truth labels for training and testing the network. The network is examined by 
using both the synthesized validation dataset and the real spectra dataset collected from experiments. Multiple 
validation metrics are calculated to evaluate the performance of the network regarding the two datasets, includ-
ing exact accuracy, recognition accuracy, average precision, average recall, and average F1-score. The sensitivity 
of the network is explored by testing the lowest detectable PSNR and detectable jump ratio.

The average F1-score, recall, and precision for the real spectra dataset agree well with those for the validation 
dataset, which suggests that, for one thing, the synthesized spectra are comparable to real spectra, for the other, 
the network is well-trained without overfitting. The high values of these three metrics also illustrate the good 
performance of the network in respect to the low false positive or false negative rate. We find that for 98.9% of 
the real spectra, our network is able to recognize all the edges. For 94.9% of them, our network can accurately 
recognize all the edges without false positive edges, which means that only around 4% of the spectra have false 
positive edges, and around 1% of the spectra have false negative edges. What’s more, the low value of the detect-
able PSNRs and jump ratios further demonstrate the high sensitivity of our network.

Taken together, our CNN-BiLSTM network can automatically recognize the core-loss edges on a raw spec-
trum with high accuracy. It is also safe to be applied to EELS spectra where the SNR and jump ratio are extremely 
low. The success of the network in automatically recognizing core-loss edges on a raw spectrum further makes 
it possible to the automation of more advanced core-loss edge analysis.

Data availability
Data and code are available from the corresponding author upon request.
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