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Electron energy loss spectroscopy
database synthesis and automation
of core-loss edge recognition

by deep-learning neural networks

Lingli Kong, Zhengran Ji & Huolin L. Xin™*

The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable
advanced material analysis including composition analyses and elemental quantifications. The
development of the parallel EELS instrument and fast, sensitive detectors have greatly improved

the acquisition speed of EELS spectra. However, the traditional way of core-loss edge recognition

is experience based and human labor dependent, which limits the processing speed. So far, the

low signal-noise ratio and the low jump ratio of the core-loss edges on the raw EELS spectra have
been challenging for the automation of edge recognition. In this work, a convolutional-bidirectional
long short-term memory neural network (CNN-BiLSTM) is proposed to automate the detection and
elemental identification of core-loss edges from raw spectra. An EELS spectral database is synthesized
by using our forward model to assist in the training and validation of the neural network. To make the
synthesized spectra resemble the real spectra, we collected a large library of experimentally acquired
EELS core edges. In synthesize the training library, the edges are modeled by fitting the multi-
Gaussian model to the real edges from experiments, and the noise and instrumental imperfectness
are simulated and added. The well-trained CNN-BiLSTM network is tested against both the simulated
spectra and real spectra collected from experiments. The high accuracy of the network, 94.9%, proves
that, without complicated preprocessing of the raw spectra, the proposed CNN-BiLSTM network
achieves the automation of core-loss edge recognition for EELS spectra with high accuracy.

Ionization edges (core-loss edges) on the electron energy loss spectra (EELS) carry important information
not only reflecting the elemental information but also allowing quantitative composition analysis. In addition,
the edge onset shift and the near-edge fine structure can be used to deduce the bonding state'. Compared to
Energy Dispersive X-ray Spectroscopy (EDS), EELS can deliver electronic state information of a material and
has higher sensitivity in detecting light elements**. However, the core-loss region of EELS is also featured by
the low signal-noise ratio (SNR). Thus, precisely recognizing the elemental edges is the first step before any
advanced analysis.

The traditional way of edge recognition involves multiple steps. Preprocessing operations, including back-
ground removal and sometimes multiple-scattering effect deconvolution, are conducted to extract the edges from
the spectrum. Afterward, these edges are classified by referring to the database generated by verified experimental
data®. Therefore, this process requires significant manual labor and is experience based.

Automatically finding ionization peaks in Energy Dispersive X-ray Spectroscopy (EDS) is now routine in com-
mercial software because the peaks are distinctively above the background and the shapes are almost universally
gaussian. However, automatically identifying edges in the EELS spectrum has been traditionally difficult because
the edges are sitting on a large background, and in most cases, the jump ratio is low. Due to this nature, it has
been non-trivial to locating EELS edges automatically. A number of approaches have been proposed to extract
edges of unknown components in the spectrum, such as the spatial variant difference approach, multivariate
statistical analysis® (independent components analysis (ICA)®’, principal components analysis (PCA)?®), etc.
Unfortunately, these approaches have constraints and are rarely used in existing EELS software because they
are not always robust. Artificial intelligence (AI) has drawn the attention of researchers to simplify complex
workflows and reduce labor work. Machine learning algorithms have been successfully implemented in mineral
recognition and classification from Raman spectra’. A dual Autoencoder-Classifier algorithm was also utilized to
achieve the core-loss region denoising'. For detecting core-loss edges from the raw EELS spectra, Chatzidakis,

Department of Physics, University of California, Irvine, CA 92617, USA. **email: huolin.xin@uci.edu

Scientific Reports | (2022) 12:22183 | https://doi.org/10.1038/s41598-022-25870-3 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25870-3&domain=pdf

www.nature.com/scientificreports/

Intensity (a.u.)

—— modeled —— before convolution

\
\ /—\ | \ —— after convolution

exp. data —— exp. data
—— modeled

§

639 651 651

638 - ( \\\
/\/ﬁ I
J

530 545 530

J\f\ /”_\\\ \//\\‘
: i i

Intensity (a.u.)

Intensity (a.u.)

635 640

650
Energy Loss (eV) Energy Loss (eV) Energy Loss (eV)

655 660 665 283 307 283 307 630 635 640 645 650 655

(a) multi-gaussian fitting of Mn-L edge (b) original and modeled edges (c) Mn-L edge with convolution

Figure 1. Ionization edge modeling.

et. al. proposed a convolutional neural network (CNN) for feature extraction and compound classification, but
it was specifically trained for Mn element valance classification''. A network that can recognize all the elements
on a raw spectrum remains to be developed.

Given that the ionization energy of a specific element is highly related to its electron configuration, nuclear
charge, etc., its core-loss edge can only appear within a certain range along the energy loss axis. In other words,
the core-loss edges of different elements appear almost “sequentially” on a spectrum. In addition, core-loss edges
are present on the plasmon tail and the tails of lower energy core edges'>"?. Thus, the edge shape is also energy
loss dependent. As a result, the traditional convolutional neural network (CNN), which is originally designed
for image classification, fails to classify the different core-loss edges on a raw spectrum. The reason being that a
pure CNN ended with a fully connected classification layer that is only capable of classifying whether a certain
feature is present in the signal/image; it, however, does not use the spatial information, although the information
is encoded in the convolutional layers. For example, the latter transition metals, Mn, Fe, Co, Ni all have similar
“rabbit-ear” shaped 12,3 edges. A pure CNN network would have the tendency to misclassify these edges because
their locations on the energy axis are not used. That is why the region-based CNNs with localization/bounding
box prediction layers have been developed to perform both classification and object localization.

In this respect, the recurrent neural networks (RNNs) utilize the correlation in the “time” domain and have
been proven to be capable of handling sequence prediction problems. Based on this consideration, we built a
Convolutional-Bidirectional Long Short-Term Memory (CNN-BiLSTM) network by combining a CNN network
with an RNN network, i.e., the Bidirectional Long Short-Term Memory (BiLSTM) network. Given sufficient
training, the model is capable of achieving the automation of ionization edge recognition on raw EELS spectra.
To build a large and diverse ground truth labeled training dataset, we digitized a large number of core-loss edges
collected from real experiments and literature; we built the ground truth-labelled spectrum database by synthe-
sizing spectra by including experimental conditions, including the multiple scattering effect, the uncertainty of
the energy axis due to stray field and hysteresis of the prism, the low-frequency patterned noise, etc. Our well-
trained CNN-BiLSTM network was tested against both the validation spectra and the real spectra collected from
experiments, with average F-1 scores of 0.98 and 0.99, respectively. For the real spectra dataset prediction, only
1.1% of the predicted spectra have false-negative elements, and 94.9% of them are accurately predicted where the
predicted edges exactly match the ground truth. The sensitivity of the network was further evaluated by detect-
ing the lowest signal noise ratio at the edge peak (PSNR) for each element, at which the network can recognize
the edge. Correspondingly, the detectable jump ratios were obtained. Based on our observation, the detectable
jump ratios and PSNR are very low meaning that our networks are accurate in low-dose situations. It suggests
that our network is remarkably sensitive to the edge signal. The high accuracy and sensitivity demonstrate that
our network is highly reliable for core-loss edges recognition.

Methods

Database construction. Considering that the available spectra from our own experiments are not enough
for training a deep learning model, we built a spectrum database containing 250,000 simulated spectra, which
are synthesized based on real ionization edges obtained from experiments/literature. The various physical phe-
nomena in experiments are embedded into the synthesized spectra by convolving the broadening effects and
simulating the instability with randomness. In addition, edges from different experiments can have different
quality and energy resolutions, which help to further diversify the database. The simulated spectra are in close
resemblance to the real EELS spectra and are suitable for our CNN-BiLSTM network training.

Edge modeling. We digitized around 400 core-loss edges covering 20 different elements from journal papers.
The edges are then fitted by using the multi-gaussian model to locate the coordinates of the peaks and smooth
out the noise effects as shown in Fig. 1a'®. Figure 1b presents some examples of the fitted edges for different ele-
ments. We can notice that the fitted curves round off the noise fluctuations well with the near edge fine features
well preserved.

In the real case, when a spectrum is recorded by the detector, the instrument broadening is also convolved in
it. Therefore, we further processed the modeled edges by convolving them with the corresponding broadening
function, i.e., the point spread function (PSF). The intensity with scattering effect can be expressed as I:
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Figure 2. Jump ratio and peak signal noise ratio.

I(E) = I,(E) ® PSFzrp

where I, is the original intensity without the broadening effect and E is the energy loss.
The scattering effect is composed of amonochromaticity of the beam and broadening due to the detectors.
Thus, PSF is constructed by two terms:

PSFz1p ¢ PSFamono @ PSF detector

where PSF,,,,,, represents the energy spread of the incoming electron beam, and PSF,,,,,,, represents the broad-
ening in the detectors. For the amonochromaticity effect, the form of the Gaussian distribution function is used:

_ B
PSF 4nono o< € 202

where o is the standard deviation, and can be expressed by:

_ FWHM,
"~ 242In2

FWHM, is the full-width half-maximum of the Gaussian distribution. In our data augmentation, it ranges
from 0.1 to 1.6.

For the detector broadening effect, the Lorentzian distribution function is commonly used to describe the
diffused tail (caused by light diffusion in the scintillator and the optical fiber coupler), which is expressed by:

HWHM,
PSF getector m

HWHM, is the full width at half maximum of the Lorentzian distribution. In our data augmentation, it ranges
from 0.1 to 0.6.

With the broadening effects convolved, the synthesized edges will be comparable to those obtained from the
different instruments. Figure 1c shows the Mn-L edge before and after convolving the PSE. We can observe that
the broadening effect of the point spread functions (PSFs) has been successfully embedded into the modeled
edge. It is worth mentioning that the Lorentzian broadening is often neglected by researchers in the field but it
is a critical broadening effect that shall be included to reproduce an experimental EELS spectrum.

Background and jump ratio. In the core-loss region of the spectrum, it has been commonly accepted that the
background can be modeled by using the inverse power law equation:

J(E) x E™"

where r can vary across the specimen as a result of changes in thickness and composition. Typically, the value
of r fluctuates around 1.88. In our case, we assign the value based on a normal distribution with a mean of 1.88
and a standard deviation of 0.2. The values less than 0.1 in the normal distribution are cut off to guarantee that
the background remains realistic.

To embed the modeled edges into the background, the jump ratios of the edges must be assigned. The jump
ratio is defined as the ratio of the intensity difference between the peak intensity and the background I, and the
intensity of the edge start point I,, which is shown in Fig. 2. In our synthesized spectrum, the minimum jump
ratio of the edges is set to 0.15. Because using data with too low a SNR for training would result in overfitting
and high false positive rate, we choose a noticeable minimum jump ratio (> 0.15) to insure low false positive rate.
Based on the digitized experimental data, we use the maximum jump ratios from experimental spectrum to set
the upper limit of the jump ratios for the corresponding element. We summarized the edges of 20 elements and
their edge types collected from the literature and the jump ratio range in Table 1. In our supplementary material,
Table S1 lists the exact substances where these edges are collected.

Spectrum synthesize and data augmentation. The spectrum synthesis process is summarized in Fig. 3. The first
step is to randomly pick 1 to 6 edges from the edge library and convolve them with the PSFs. Figure 3a shows
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Element (edge type) | Jump ratio range | Number of edges | Element (edge type) | Jump ratio range | Number of edges
B (K) 0.15-0.5 31 Mn (L) 0.15-0.5 26
C(K) 0.15-1.5 25 Fe (L) 0.15-1.5 39
N (K) 0.15-0.7 14 Co (L) 0.15-0.7 23
O (K) 0.15-1.5 38 Ni (L) 0.15-1.5 20
F (K) 0.15-1.0 8 Cu (L) 0.15-1.0 17
Ca (L) 0.15-1.3 13 Si (L) 0.15-1.3 34
Sc (L) 0.15-1.3 6 P(L) 0.15-1.3 5
Ti (L) 0.15-1.5 47 S(L) 0.15-1.5 1
V(L) 0.15-1.5 40 Cl(L) 0.15-1.5 1
Cr (L) 0.15-1.5 18 Ar (L) 0.15-1.5 1
Table 1. Edge library"-%.
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Figure 3. Spectrum synthesize steps and process.

the 6 convolved edges we used in the example. Figure 3b lists the augmentation operations before obtaining the
final spectrum shown in Fig. 3c.

Since we only consider the core-loss region on spectra, the energy loss range is set from 50 to 1100 eV. The
background J(E)is normalized to J,(E):

—r

E E
In(B) = ==

Before adding the edges to the background, to simulate the long tail of the core-loss edges and obtain a
smooth merged spectrum, we extend the edges using another inverse power law, where the range of the power
is from-3.8to—1.8.

With the jump ratio randomly selected from the corresponding range for the element, the extended edge can
be added to the background, which is shown in Fig. 3d.

In the real case, distortions and translational shifts of the spectra can be introduced due to multiple reasons
including the hysteresis of the prism and the magnifying lenses, the spectrometer alignment, stray magnetic
fields, and even temperature, etc. As a result, the spectra collected at different times can vary for the same instru-
ment. To simulate these phenomena, we allocate a maximum of 1.5% of the contraction or expansion ratio to the
modeled spectrum. A random shift of the spectrum is also implemented to the spectrum with a maximum shift of
15 eV. Figure 3b and e show the expanded spectrum. The spectrum that is further shifted is shown in Fig. 3b and f.
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Figure 4. Gaussian noise and filtered noise.

Operation Randomness range
Edge select Types of elements: 1-6
FWHM_: 0.1-1.6

PSFs convolve

HWHM: 0.1-0.6

Edge extend Power r:—3.8to —1.8
Background r: Gaussian (1.88,0.2)>0.1
Jump ratio Range shown in Table 1
Contraction/expansion -1.5t01.5%

Horizontal shift -15to 15eV

Gaussian noise Gaussian (0, 0.0012)

Frame length: 30-60 odd number
Coefficient C: 1.0-2.0

Savitzky-Golay filter

Table 2. Augmentation operations summary.

The last step of the spectrum synthesis is to add correct noise to it. Firstly, Gaussian noise with a mean of 0
and a standard deviation of 0.0012 is generated. Afterward, the Savitzky—Golay filter is applied to smooth the
noise to low-frequency noise, where the polynomial order of the filter is set to 1, and the frame length is an odd
positive integer in the range of 30 to 60. Figure 4 shows the raw Gaussian noise and the filtered noise. The filtered
low-frequency noise is also called fixed-pattern noise. It is frequently seen in experimental EELS spectra primarily
due to the non-uniform gain on the scintillator. To augment the noise level, a random coeflicient C that is in the
range from 1 to 2 is further assigned to the noise. Figure 3g presents the spectrum with noise added, which is
also the input spectrum for our deep learning network. Table 2 summarizes the data augmentation operations
in the process of spectrum synthesis. We generated 250,000 spectra in total, where the percentage of the spectra
containing 1 to 6 edges are 20%, 20%, 20%, 15%, 15%, and 10%, respectively.

Network construction. CNN-BiLSTM network. CNN is a type of network developed for conducting
image recognition and has been widely implemented in image classification. A typical CNN structure is con-
structed by connecting a few convolutional layers and dense layers (fully connected layers). The convolutional
layers can extract the features from the input data and the dense layers classify the features to achieve classifi-
cation. The recognition of the ionization edges on a spectrum is also a type of image recognition task. In the
meanwhile, the onset ionization edge carries the information of the target element. The edge’s energy position
relative to others plays a critical role in the classification process. However, a pure CNN structure is insensitive
to the positional/sequential information. Given that the long short-term memory network (LSTM) enables the
network to memorize the information in sequence by selectively keeping the important data and deleting less
important data to pass to the next layer, we proposed a CNN-BiLSTM combined network for ionization edge
recognition and classification in the core loss region of the spectrum. Figure 5b shows the architecture of our
CNN-BiLSTM network, where the BiLSTM network is plotted in an unwrapped way. The real LSTM cell is de-
scribed in Fig. 5¢, and is constructed with 100 hidden units. In our case, the input layer carries the information
of a spectrum that is a 1D vector (spectrum of energy loss range from 90 to 1000 eV with interval 0.2 eV). A filter
of size 11 is implemented in each convolutional layer. Batch normalization operation® is carried out following
each convolutional layer, and 20% of node dropout regularization is utilized after each dense layer to avoid over-
fitting. Activation functions, ReLU and LeakyReLU of scale 0.01, are implemented to connect different layers as
shown in the Fig. 5b. The network is built and trained using MATLAB. The training parameter settings are listed
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Figure 5. CNN-BiLSTM network architecture. (a) The overview. (b) The CNN-BiLSTM network structure. (c)

The structure of the LSTM cell.

Options Setting
ExecutionEnvironment GPU
InitialLearnRate 0.001
GradientThreshold 1

Shuffle Every-epoch
ValidationPatience Inf
ValidationFrequency 50

Verbose True

Table 3. Network training setting.

in Table 3. 80% of the spectra in the database are randomly picked for the training set, and the remaining 20%

are for the validation set.
Results and discussion
Prediction validation.

tiple metrics.

F1-score.

The performance of the proposed CNN-BiLSTM network is validated using mul-

To evaluate the performance of the network per spectrum, we calculate the F1-score for each pre-

dicted spectrum, which is defined as the harmonic mean of precision and recall. We use NE,, NE,, and NE, to
represent the number of correctly predicted edges (true positive), the total number of predicted edges (predicted
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Figure 6. Performance of the well-trained CNN-BiLSTM network.

positive), and the number of real edges (actual positive) on the spectrum, respectively. Precision, recall, and
F1-score can be calculated by using the following equations:

. . c

recision = ——
P NE,
NE,

recall =
.

_ 2

recall ™' + precision™

1

Exact accuracy. We use exact accuracy (ACC) to check how our network can accurately recognize all the edges
on a spectrum, i.e., the ratio of the number of spectra accurately predicted (N,,,) to the total number of spectra
tested (N). This value also reflects the percentage of the spectra whose F1-score equals to 1.

N,
Acc = 22

Recognition accuracy. The following equation shows the format of the recognition accuracy. N,,, represents the
number of spectra that the network can recognize all the edges that appear on them. In other words, the percent-
age of the spectra whose recall is 1. This matric suggests how sensitive the network can detect the available edges.

N,
REC — rec

Network validation. Besides the synthesized validation dataset, we also use 177 real experimental spectra to
examine the performance of our network. The real spectra are from EELS Atlas Database from EELS.info, EELS
DB (EELS Data Base) and our own experimental data®. Detailed experimental conditions for each spectra,
including spectrum acquisition instrument, energy resolution, etc. are listed in Table S2 of the supplementary
material.

Figure 6a shows the values of validation metrics for both the real spectra dataset and the validation dataset
(The precision, recall, and F1-score are the averaged values). Figure 6b presents the boxplots of the F1-scores of
the two datasets, where only some outliers have F1-scores less than 1, which means that our network is highly
accurate in recognizing the edges. The average F1-scores of the real spectra dataset and the validation dataset are
as high as 0.99 and 0.98, respectively. The comparable high F1-scores of the two datasets further indicate that the
network is well-trained without overfitting. The average precision of the real spectra dataset and the validation
dataset are 0.98 and 0.99, respectively. The average recall of the real spectra dataset and the validation dataset
are 0.99 and 0.97, respectively. The high values of the precision and recall indicate that false positive and false
negative edges barely appear in a prediction.

The exact accuracy and the recognition accuracy are two metrics describing the percentages of the desired
spectra. For the real dataset, the exact accuracy reaches 94.9%. And the network sensitively detects all the edges
presented on the spectra, which can be reflected by the recognition accuracy of 98.9%. In other words, only
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Figure 7. Network prediction versus ground truth for C-K edges from different materials.

around 1% of the predicted spectra have edges that failed to be detected by our network. Indeed, among the 9
failed cases, almost all the false positive Edges are due to the misrecognition of the nitrogen edge and scandium
edge. Because the edges of these two elements have similar shapes and onsets, they can look identical on a
spectrum. The false negative edges appear when the jump ratio is too low to be visible. The exact accuracy and
recognition accuracy of the validation set is relatively lower than those of the real spectra dataset, but they are
still around 90%. This phenomenon could be caused by the higher diversity of the synthesized spectra, where
we stretched the parameters’ ranges during data augmentation to create more extreme cases.

Considering that the same element presenting in different compounds or allotropes can generate edges with
various fine structures, the capability of our network in recognizing these edges is further evaluated. Carbon, as
one of the essential elements forming the most compounds on earth and has multiple allotropes, is chosen as an
example in this section to test our network. Figure 7 shows the C-K edge prediction of our network compared
with the ground truth. Our network precisely detected the existence of the C-K edges in different materials
containing carbon element. In addition, those spectra are from experiments®®® different from those in our
edge library.

Evaluation of model’s sensitivity. Peak signal noise ratio (PSNR).  To further evaluate the sensitivity of
the model in detecting the ionization edges for a specific element, we introduce the concept of Peak Signal Noise
Ratio, which is the signal noise ratio at the peak of the edge. It is expressed by the ratio of the signal at the edge
peak off the inverse power law background (shown in Fig. 2 as ,) to the standard deviation of the noise (sd). In
other words,

Iy
PSNR = —
sd
To make the value of PSNR for different elements comparable, we further synthesize one spectrum for each
element with the value of the power r for the background set to be the same constant 1.88. We added differ-
ent levels of the Gaussian noise (white noise) to the spectra to create more extreme situations to examine the
sensitivity of our network. The standard deviation of the noise is set to be one-tenth of the minimum value of
the background:
min J,(E)
std — 501100
10
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Element (edge type) | PSNR | Jump ratio | Element (edge type) | PSNR | Jump ratio
B (K) 23.00 0.077 Mn (L) 3.50 0.090
C(K) 1040 | 0.071 Fe (L) 3.68 |0.116
N (K) 5.87 0.068 Co (L) 3.52 0.130
O (K) 4.51 0.088 Ni (L) 3.05 0.126
F (K) 3.45 0.099 Cu (L) 3.16 0.158
Ca (L) 769 |0.075 Si (L) 56.29 | 0.059
Sc (L) 6.29 0.078 P (L) 50.26 | 0.086
Ti (L) 5.36 0.083 S@L) 19.26 | 0.049
V(L) 399 | 0.070 Cl(L) 16.82 | 0.062
Cr (L) 3.85 0.083 Ar (L) 7.94 0.040

Table 4. Detectable PSNR and jump ratio. Significant values are in bold.

Sensitivity evaluation. To quantify the sensitivity of our network, we searched for the minimum value of PSNR
for each element that the network can correctly recognize by varying the scale of the peak. To avoid anomalous
results, for each element, we test the minimum value of PSNR for each edge in the library for 100 times and use
the arithmetic mean as the final detectable PSNR. Correspondingly, the value of the jump ratio can be captured
simultaneously. The results are listed in Table 4.

It is worth noting that the detectable jump ratios in Table 4 are much lower than the minimum value of 0.15
we set for building the training dataset. This result illustrates that our network can manage the situation when
the jump ratios of the edges are lower than those commonly observed in experiments. In the meanwhile, the
noise is not smoothed by the Savitzky-Golay filter at this stage. Still, our network can sensitively extract valu-
able information from the noisy spectra. Thus, the detectable PSNR and Jump ratio in Table 4 can also serve as a
reference for researchers determining whether the edges obtained from their experiments can be recognized by
our network. Higher detectable PSNRs for light elements are expected because these edges tend to appear in a
relatively high-intensity lower energy loss region. Referring to the corresponding low jump ratios, the network
performs well in recognizing these light elements’ ionization edges.

Conclusion

In this work, we built a CNN-BiLSTM network for automatically detecting the ionization edges on EELS spectra.
We also created a forward model for synthesizing EELS spectra, which allows us to create a database contain-
ing 250,000 spectra with ground-truth labels for training and testing the network. The network is examined by
using both the synthesized validation dataset and the real spectra dataset collected from experiments. Multiple
validation metrics are calculated to evaluate the performance of the network regarding the two datasets, includ-
ing exact accuracy, recognition accuracy, average precision, average recall, and average F1-score. The sensitivity
of the network is explored by testing the lowest detectable PSNR and detectable jump ratio.

The average F1-score, recall, and precision for the real spectra dataset agree well with those for the validation
dataset, which suggests that, for one thing, the synthesized spectra are comparable to real spectra, for the other,
the network is well-trained without overfitting. The high values of these three metrics also illustrate the good
performance of the network in respect to the low false positive or false negative rate. We find that for 98.9% of
the real spectra, our network is able to recognize all the edges. For 94.9% of them, our network can accurately
recognize all the edges without false positive edges, which means that only around 4% of the spectra have false
positive edges, and around 1% of the spectra have false negative edges. What’s more, the low value of the detect-
able PSNRs and jump ratios further demonstrate the high sensitivity of our network.

Taken together, our CNN-BiLSTM network can automatically recognize the core-loss edges on a raw spec-
trum with high accuracy. It is also safe to be applied to EELS spectra where the SNR and jump ratio are extremely
low. The success of the network in automatically recognizing core-loss edges on a raw spectrum further makes
it possible to the automation of more advanced core-loss edge analysis.

Data availability

Data and code are available from the corresponding author upon request.
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